Pointwise multipliers for Besov spaces \(B^{0,b}_{p,\infty}({\mathbb{R}}^n)\) with only logarithmic smoothness
From MaRDI portal
Publication:6196046
DOI10.1007/s10231-023-01379-yarXiv2210.14073MaRDI QIDQ6196046
Zi-Wei Li, Winfried Sickel, Da Chun Yang, Wen Yuan
Publication date: 14 March 2024
Published in: Annali di Matematica Pura ed Applicata. Serie Quarta (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2210.14073
Function spaces arising in harmonic analysis (42B35) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Characterizations of logarithmic Besov spaces in terms of differences, Fourier-analytical decompositions, wavelets and semi-groups
- On the relationship between two kinds of Besov spaces with smoothness near zero and some other applications of limiting interpolation
- Approximation spaces, limiting interpolation and Besov spaces
- On Besov spaces of logarithmic smoothness and Lipschitz spaces
- Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness
- Pointwise multipliers for Besov spaces of dominating mixed smoothness. II
- A discrete transform and decompositions of distribution spaces
- A diagonal embedding theorem for function spaces with dominating mixed smoothness
- Morrey and Campanato meet Besov, Lizorkin and Triebel
- Theorems on the traces and multipliers of functions from Lizorkin-Triebel spaces
- Hölder inequalities and sharp embeddings in function spaces of \(B_{pq}^ s\) and \(F_{pq}^ s\) type
- Pointwise multipliers of Besov spaces of smoothness zero and spaces of continuous functions.
- On pointwise multipliers for \(F_{p,q}^s (\mathbb{R}^n)\) in case \(\sigma_{p,q}< s< n/p\)
- Sharp embeddings of Besov spaces with logarithmic smoothness in sub-critical cases
- Wavelet bases in generalized Besov spaces
- Optimal local embeddings of Besov spaces involving only slowly varying smoothness
- Pointwise multipliers of Zygmund classes on \(\mathbb{R}^n\)
- Besov and Triebel-Lizorkin spaces on metric spaces: embeddings and pointwise multipliers
- Pointwise multipliers for Sobolev and Besov spaces of dominating mixed smoothness
- Characterisations of function spaces of generalised smoothness
- Non-smooth atoms and pointwise multipliers in function spaces
- On the regularity of characteristic functions
- Embeddings of Besov spaces of logarithmic smoothness
- Theory of Sobolev Multipliers
- Quelques espaces fonctionnels associés à des processus gaussiens
- On a problem of Jaak Peetre concerning pointwise multipliers of Besov spaces
- Linear and Quasilinear Parabolic Problems
- Local growth envelopes of spaces of generalized smoothness: the subcriticalcase
- On the Spaces of T<scp>riebel‐</scp>L<scp>izorkin</scp> Type: Pointwise Multipliers and Spaces on Domains
- Characterizations of pointwise multipliers of Besov spaces in endpoint cases with an application to the duality principle
This page was built for publication: Pointwise multipliers for Besov spaces \(B^{0,b}_{p,\infty}({\mathbb{R}}^n)\) with only logarithmic smoothness