A surgery formula for knot Floer homology

From MaRDI portal
Publication:6203833

DOI10.4171/QT/188arXiv1901.02488OpenAlexW2908718270WikidataQ130072522 ScholiaQ130072522MaRDI QIDQ6203833

Author name not available (Why is that?)

Publication date: 8 April 2024

Published in: (Search for Journal in Brave)

Abstract: Let K be a rationally null-homologous knot in a 3-manifold Y, equipped with a nonzero framing lambda, and let Ylambda(K) denote the result of lambda-framed surgery on Y. Ozsv'ath and Szab'o gave a formula for the Heegaard Floer homology groups of Ylambda(K) in terms of the knot Floer complex of (Y,K). We strengthen this formula by adding a second filtration that computes the knot Floer complex of the dual knot Klambda in Ylambda, i.e., the core circle of the surgery solid torus. In the course of proving our refinement we derive a combinatorial formula for the Alexander grading which may be of independent interest.


Full work available at URL: https://arxiv.org/abs/1901.02488



No records found.


No records found.








This page was built for publication: A surgery formula for knot Floer homology

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6203833)