Regularity criteria for the Euler equations with nondecaying data
From MaRDI portal
Publication:622412
DOI10.1016/j.na.2010.10.011zbMath1372.35223OpenAlexW1996174671MaRDI QIDQ622412
Publication date: 31 January 2011
Published in: Nonlinear Analysis. Theory, Methods \& Applications. Series A: Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.na.2010.10.011
Existence problems for PDEs: global existence, local existence, non-existence (35A01) Existence, uniqueness, and regularity theory for incompressible inviscid fluids (76B03) Euler equations (35Q31) Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness (35A02)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Liouville theorems for the Navier-Stokes equations and applications
- Regularity criteria for the generalized Navier-Stokes and related equations.
- Weak solutions of 2-D Euler equations with initial vorticity in \(L(\log L\))
- Local existence and blow-up criterion for the Euler equations in Besov spaces of weak type
- Remarks on the breakdown of smooth solutions for the 3-D Euler equations
- Réalisations des espaces de Besov homogènes. (Realization of homogeneous Besov spaces)
- Hydrodynamics in Besov spaces
- Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogene, incompressible, pendant un temps infiniment long
- Local well-posedness for the incompressible Euler equations in the critical Besov spaces.
- A remark on \(L^{\infty}\) solutions to the 2-D Navier-Stokes equations
- Nonstationary flows of viscous and ideal fluids in \(R^3\)
- Existence et unicité de la solution de l'équation d'Euler en dimension deux
- On logarithmically improved regularity criteria for the Navier-Stokes equations in Rn
- Existence of Solution for the Euler Equations in a Critical Besov Space (ℝn)
- Logarithmically improved regularity criteria for Navier-Stokes and related equations
- Commutator estimates and the euler and navier-stokes equations
- Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires
- On the well‐posedness of the Euler equations in the Triebel‐Lizorkin spaces
- The Convergence with Vanishing Viscosity of Nonstationary Navier-Stokes Flow to Ideal Flow in R 3
- Well-posedness for the Navier-Stokes equations
- Limiting case of the Sobolev inequality in BMO, with application to the Euler equations
This page was built for publication: Regularity criteria for the Euler equations with nondecaying data