Splitting Methods for Convex Clustering

From MaRDI portal
Publication:6240806

arXiv1304.0499MaRDI QIDQ6240806

Author name not available (Why is that?)

Publication date: 1 April 2013

Abstract: Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient.




Has companion code repository: https://github.com/echi/cvxclustr

No records found.








This page was built for publication: Splitting Methods for Convex Clustering

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6240806)