Infinitésimal \(p\)-adic topos of a smooth scheme. I.
DOI10.5802/aif.2576zbMath1220.14017arXiv1009.3108OpenAlexW2319837687MaRDI QIDQ624775
Zoghman Mebkhout, Alberto Arabia
Publication date: 9 February 2011
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1009.3108
group of automorphismsGysin sequencefunctoriality\(p\)-adic de Rham cohomology\(p\)-adic de Rham complextransfer module\(\dagger\)-adic algebras\(\dagger\)-adic schemes\(p\)-adic differential operatorscohomological operationsfactorization of the zeta functionflat liftingsinfinitesimal siteinfinitesimal toposspecial module
Finite ground fields in algebraic geometry (14G15) Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials (14F10) de Rham cohomology and algebraic geometry (14F40) Commutative rings of differential operators and their modules (13N10) (p)-adic cohomology, crystalline cohomology (14F30) (p)-adic differential equations (12H25)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The total symbol theorem of a \(p\)-adic differential echelon operator \(h\geq 0\)
- The total symbol theorem of a \(p\)-adic differential operator
- Infinitésimal \(p\)-adic topos of a smooth scheme. I.
- F-isocrystals and De Rham cohomology. I
- Cohomologie cristalline des schemas de caractéristique \(p >0\)
- On the index theorem for \(p\)-adic differential equations. I
- On the index theorem for \(p\)-adic differential equations. II
- On the index theorem for \(p\)-adic differential equations. III
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie). Rédigé avec la colloboration de J. Dieudonné
- Formal cohomology. I
- Formal cohomology. II: The cohomology sequence of a pair
- Formal cohomology. III: Fixed point theorems
- Éléments de géométrie algébrique. I: Le langage des schémas. II: Étude globale élémentaire de quelques classe de morphismes. III: Étude cohomologique des faisceaux cohérents (première partie)
- Géométrie rigide et cohomologie des variétés algébriques de caractéristique $p$
- La théorie du polynôme de Bernstein-Sato pour les algèbres de Tate et de Dwork-Monsky-Washnitzer
- Sur le theoreme de finitude de la cohomologie p -adique d'une variete affine non singuliere.
- THE CONSTRUCTION OF FORMAL COHOMOLOGY SHEAVES
- On the Rationality of the Zeta Function of an Algebraic Variety
- Weak Formal Schemes
- On the De Rham cohomology of algebraic varieties
- On the index theorem for \(p\)-adic differential equations. IV
- Liftings of smooth algebras and of their morphisms
This page was built for publication: Infinitésimal \(p\)-adic topos of a smooth scheme. I.