Defining and computing persistent Z-homology in the general case
From MaRDI portal
Publication:6250202
arXiv1403.7086MaRDI QIDQ6250202
Author name not available (Why is that?)
Publication date: 26 March 2014
Abstract: By general case we mean methods able to process simplicial sets and chain complexes not of finite type. A filtration of the object to be studied is the heart of both subjects persistent homology and spectral sequences. In this paper we present the complete relation between them, both from theoretical and computational points of view. One of the main contributions of this paper is the observation that a slight modification of our previous programs computing spectral sequences is enough to compute also persistent homology. By inheritance from our spectral sequence programs, we obtain for free persistent homology programs applicable to spaces not of finite type (provided they are spaces with effective homology) and with Z-coefficients (significantly generalizing the usual presentation of persistent homology over a field). As an illustration, we compute some persistent homology groups (and the corresponding integer barcodes) in the case of a Postnikov tower.
Has companion code repository: https://github.com/n-otter/PH-roadmap
This page was built for publication: Defining and computing persistent Z-homology in the general case
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6250202)