On the Global Linear Convergence of Frank-Wolfe Optimization Variants

From MaRDI portal
Publication:6267549

arXiv1511.05932MaRDI QIDQ6267549

Author name not available (Why is that?)

Publication date: 18 November 2015

Abstract: The Frank-Wolfe (FW) optimization algorithm has lately re-gained popularity thanks in particular to its ability to nicely handle the structured constraints appearing in machine learning applications. However, its convergence rate is known to be slow (sublinear) when the solution lies at the boundary. A simple less-known fix is to add the possibility to take 'away steps' during optimization, an operation that importantly does not require a feasibility oracle. In this paper, we highlight and clarify several variants of the Frank-Wolfe optimization algorithm that have been successfully applied in practice: away-steps FW, pairwise FW, fully-corrective FW and Wolfe's minimum norm point algorithm, and prove for the first time that they all enjoy global linear convergence, under a weaker condition than strong convexity of the objective. The constant in the convergence rate has an elegant interpretation as the product of the (classical) condition number of the function with a novel geometric quantity that plays the role of a 'condition number' of the constraint set. We provide pointers to where these algorithms have made a difference in practice, in particular with the flow polytope, the marginal polytope and the base polytope for submodular optimization.




Has companion code repository: https://github.com/Simon-Lacoste-Julien/linearFW

No records found.








This page was built for publication: On the Global Linear Convergence of Frank-Wolfe Optimization Variants

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6267549)