The Rare Eclipse Problem on Tiles: Quantised Embeddings of Disjoint Convex Sets

From MaRDI portal
Publication:6283223

arXiv1702.04664MaRDI QIDQ6283223

Author name not available (Why is that?)

Publication date: 15 February 2017

Abstract: Quantised random embeddings are an efficient dimensionality reduction technique which preserves the distances of low-complexity signals up to some controllable additive and multiplicative distortions. In this work, we instead focus on verifying when this technique preserves the separability of two disjoint closed convex sets, i.e., in a quantised view of the "rare eclipse problem" introduced by Bandeira et al. in 2014. This separability would ensure exact classification of signals in such sets from the signatures output by this non-linear dimensionality reduction. We here present a result relating the embedding's dimension, its quantiser resolution and the sets' separation, as well as some numerically testable conditions to illustrate it. Experimental evidence is then provided in the special case of two ell2-balls, tracing the phase transition curves that ensure these sets' separability in the embedded domain.




Has companion code repository: https://github.com/VC86/MLSPbox








This page was built for publication: The Rare Eclipse Problem on Tiles: Quantised Embeddings of Disjoint Convex Sets

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6283223)