Constructing tight fusion frames

From MaRDI portal
Publication:629255

DOI10.1016/j.acha.2010.05.002zbMath1221.42052OpenAlexW2152214775MaRDI QIDQ629255

Zhengfang Zhou, Matthew Fickus, Dustin G. Mixon, Yang Wang, Peter G. Casazza

Publication date: 9 March 2011

Published in: Applied and Computational Harmonic Analysis (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/j.acha.2010.05.002




Related Items (44)

Expansion in matrix-weighted graphsTight frames, Hadamard matrices and Zauner’s conjectureCompressive Sensing with Redundant Dictionaries and Structured MeasurementsFusion-Riesz frame in Hilbert spaceFusion Frames and the Restricted Isometry PropertyEquiangular tight frames that contain regular simplicesFrame scalings: a condition number approachConstructing all self-adjoint matrices with prescribed spectrum and diagonalFrames over finite fields: basic theory and equiangular lines in unitary geometrySparsity and spectral properties of dual framesHarmonic Grassmannian codesDiscrete Gabor frames and \(K\)-discrete Gabor framesNecessary and sufficient conditions to perform spectral tetrisFusion frame homotopy and tightening fusion frames by gradient descentNon-orthogonal fusion frames and the sparsity of fusion frame operatorsRepresentation of operators using fusion framesThe duals of fusion frames for experimental data transmission coding of high energy physicsOrthogonal projection decomposition of matrices and construction of fusion framesA note on perturbations of fusion framesDecomposition of a Hermitian matrix into a sum of fixed number of orthogonal projectionsUnnamed ItemSparse fusion frames: existence and constructionPrime tight framesWeighted fusion frame construction via spectral tetrisPhase retrieval from very few measurementsAuto-tuning unit norm framesConstruction of fusion frame systems in finite dimensional Hilbert spacesA Measurable Selector in Kadison’s Carpenter’s TheoremSteiner equiangular tight framesGrassmannian codes from paired difference setsGeneralized tight \(p\)-frames and spectral bounds for Laplace-like operatorsThe algebraic matroid of the finite unit norm tight frame (funtf) varietyReproducing kernels for the irreducible components of polynomial spaces on unions of GrassmanniansTight \(p\)-fusion framesConstructing finite frames of a given spectrum and set of lengthsSums of orthogonal projectionsSpectral tetris fusion frame constructionsEvery Hilbert space frame has a Naimark complementSparse matrices in frame theoryConstructing subspace packings from other packingsRandomized subspace actions and fusion framesThe Fundamentals of Spectral Tetris Frame ConstructionsDuality for framesMini-workshop: Algebraic, geometric, and combinatorial methods in frame theory. Abstracts from the mini-workshop held September 30 -- October 6, 2018



Cites Work


This page was built for publication: Constructing tight fusion frames