Asynchronous Decentralized Parallel Stochastic Gradient Descent
From MaRDI portal
Publication:6292754
arXiv1710.06952MaRDI QIDQ6292754
Author name not available (Why is that?)
Publication date: 18 October 2017
Abstract: Most commonly used distributed machine learning systems are either synchronous or centralized asynchronous. Synchronous algorithms like AllReduce-SGD perform poorly in a heterogeneous environment, while asynchronous algorithms using a parameter server suffer from 1) communication bottleneck at parameter servers when workers are many, and 2) significantly worse convergence when the traffic to parameter server is congested. Can we design an algorithm that is robust in a heterogeneous environment, while being communication efficient and maintaining the best-possible convergence rate? In this paper, we propose an asynchronous decentralized stochastic gradient decent algorithm (AD-PSGD) satisfying all above expectations. Our theoretical analysis shows AD-PSGD converges at the optimal rate as SGD and has linear speedup w.r.t. number of workers. Empirically, AD-PSGD outperforms the best of decentralized parallel SGD (D-PSGD), asynchronous parallel SGD (A-PSGD), and standard data parallel SGD (AllReduce-SGD), often by orders of magnitude in a heterogeneous environment. When training ResNet-50 on ImageNet with up to 128 GPUs, AD-PSGD converges (w.r.t epochs) similarly to the AllReduce-SGD, but each epoch can be up to 4-8X faster than its synchronous counterparts in a network-sharing HPC environment. To the best of our knowledge, AD-PSGD is the first asynchronous algorithm that achieves a similar epoch-wise convergence rate as AllReduce-SGD, at an over 100-GPU scale.
Has companion code repository: https://github.com/VhalPurohit/290s
This page was built for publication: Asynchronous Decentralized Parallel Stochastic Gradient Descent
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6292754)