A posteriori error estimation of residual type for anisotropic diffusion-convection-reaction problems
DOI10.1016/j.cam.2010.11.032zbMath1210.65187OpenAlexW2055792370MaRDI QIDQ629557
Thomas Apel, Serge Nicaise, Dieter Sirch
Publication date: 9 March 2011
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.cam.2010.11.032
interpolationSobolev spacesstabilizationbubble functionsa posteriori error estimateelliptic problemanisotropic diffusionanisotropic finite elementsstreamline upwind Petrov-Galerkin methodSUPGseminormoptimal lower bounddiffusion-convection-reaction problem
Error bounds for boundary value problems involving PDEs (65N15) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A posteriori error estimators for convection-diffusion equations
- Stabilized Galerkin methods and layer-adapted grids for elliptic problems
- Quasioptimal uniformly convergent finite element methods for the elliptic boundary layer problem
- Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation
- An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes
- Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems
- Anisotropic mesh refinement in stabilized Galerkin methods
- A posteriori error estimators, gradient recovery by averaging, and superconvergence
- The reliability of local error estimators for convection-diffusion equations
- A Local Problem Error Estimator for Anisotropic Tetrahedral Finite Element Meshes
- An optimal control approach to a posteriori error estimation in finite element methods
- Robust Numerical Methods for Singularly Perturbed Differential Equations
- Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems on Anisotropically Refined Meshes
- An Anisotropic Error Indicator Based on Zienkiewicz--Zhu Error Estimator: Application to Elliptic and Parabolic Problems
- Uniform Convergence and Superconvergence of Mixed Finite Element Methods on Anisotropically Refined Grids
- A posteriori error estimation for convection dominated problems on anisotropic meshes
- Robust a-posteriori estimator for advection-diffusion-reaction problems
- Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations
- Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction-diffusion problems
- An anisotropic a posteriori error estimate for a convection-diffusion problem
- Robust a posteriori error estimation for a singularly perturbed reaction--diffusion equation on anisotropic tetrahedral meshes
This page was built for publication: A posteriori error estimation of residual type for anisotropic diffusion-convection-reaction problems