A variant of the Johnson-Lindenstrauss lemma for circulant matrices
From MaRDI portal
Publication:629700
DOI10.1016/j.jfa.2010.11.014zbMath1220.46015arXiv1002.2847OpenAlexW2962683872WikidataQ124802332 ScholiaQ124802332MaRDI QIDQ629700
Publication date: 9 March 2011
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1002.2847
Random matrices (probabilistic aspects) (60B20) Eigenvalues, singular values, and eigenvectors (15A18) Embeddings of discrete metric spaces into Banach spaces; applications in topology and computer science (46B85)
Related Items (10)
Johnson–Lindenstrauss Embeddings with Kronecker Structure ⋮ Sparser Johnson-Lindenstrauss Transforms ⋮ Suprema of Chaos Processes and the Restricted Isometry Property ⋮ Restricted isometries for partial random circulant matrices ⋮ Fast Metric Embedding into the Hamming Cube ⋮ Robustness properties of dimensionality reduction with Gaussian random matrices ⋮ On using Toeplitz and circulant matrices for Johnson-Lindenstrauss transforms ⋮ Real-valued embeddings and sketches for fast distance and similarity estimation ⋮ Unnamed Item ⋮ On Using Toeplitz and Circulant Matrices for Johnson-Lindenstrauss Transforms
Cites Work
- Unnamed Item
- Unnamed Item
- Restricted isometries for partial random circulant matrices
- Fast dimension reduction using Rademacher series on dual BCH codes
- Database-friendly random projections: Johnson-Lindenstrauss with binary coins.
- Adaptive estimation of a quadratic functional by model selection.
- Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform
- Johnson-Lindenstrauss lemma for circulant matrices**
- New and Improved Johnson–Lindenstrauss Embeddings via the Restricted Isometry Property
- Extensions of Lipschitz mappings into a Hilbert space
- On variants of the Johnson–Lindenstrauss lemma
- An elementary proof of a theorem of Johnson and Lindenstrauss
- The Fast Johnson–Lindenstrauss Transform and Approximate Nearest Neighbors
This page was built for publication: A variant of the Johnson-Lindenstrauss lemma for circulant matrices