Cyclotomic Hecke algebras of \(G(r,p,n)\).
From MaRDI portal
Publication:630072
DOI10.1007/s10468-009-9170-5zbMath1214.20007OpenAlexW2076679497MaRDI QIDQ630072
Publication date: 17 March 2011
Published in: Algebras and Representation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10468-009-9170-5
Specht modulesirreducible representationscyclotomic Hecke algebrascomplex reflection groupsGröbner-Shirshov basescozy tableaux
Hecke algebras and their representations (20C08) Reflection and Coxeter groups (group-theoretic aspects) (20F55)
Related Items
Monomial bases for the primitive complex Shephard groups of rank three ⋮ A computational approach to Shephard groups
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cyclotomic \(q\)-Schur algebras
- A Hecke algebra of \((\mathbb{Z}/r\mathbb{Z})\wr{\mathfrak S}_ n\) and construction of its irreducible representations
- On the semi-simplicity of the Hecke algebra of \((\mathbb{Z}/r\mathbb{Z})\wr{\mathfrak S}_ n\)
- Gröbner-Shirshov bases for irreducible \(sl_{n+1}\)-modules
- Hecke algebras, Specht modules and Gröbner-Shirshov bases.
- Representation theory of a Hecke algebra of \(G(r,p,n)\)
- Linear algebraic approach to Gröbner-Shirshov basis theory
- Families of the characters of the cyclotomic Hecke algebras of \(G(de,e,r)\).
- Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Translation from the German
- GRÖBNER-SHIRSHOV BASES FOR COXETER GROUPS
- GROBNER-SHIRSHOV BASES FOR IRREDUCIBLE sp4-MODULES
- Representations of Ariki–Koike algebras and Gröbner–Shirshov bases
- Finite Unitary Reflection Groups
- Invariants of Finite Groups Generated by Reflections