Cartesian effect categories are Freyd-categories
DOI10.1016/j.jsc.2010.09.008zbMath1229.18005OpenAlexW2052395241MaRDI QIDQ631572
Jean-Guillaume Dumas, Jean-Claude Reynaud, Dominique Duval
Publication date: 14 March 2011
Published in: Journal of Symbolic Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jsc.2010.09.008
monadscategorical logiccategorical semanticscomputational effectssequential productarrowsCartesian effect categorieseffect categoriesFreyd-categoriesHaskell's arrowspremonoidal categories
Semantics in the theory of computing (68Q55) Categorical semantics of formal languages (18C50) Categorical structures (18D99)
Related Items (3)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Notions of computation and monads
- Partiality, cartesian closedness, and toposes
- Introduction to extensive and distributive categories
- Generalising monads to arrows
- Combining effects: sum and tensor
- Control categories and duality: on the categorical semantics of the lambda-mu calculus
- Premonoidal categories and notions of computation
- What is a Categorical Model of Arrows?
- A new notation for arrows
This page was built for publication: Cartesian effect categories are Freyd-categories