Skew quasisymmetric Schur functions and noncommutative Schur functions

From MaRDI portal
Publication:631821

DOI10.1016/j.aim.2010.12.015zbMath1214.05170arXiv1007.0994OpenAlexW1970971799MaRDI QIDQ631821

Kurt W. Luoto, Stephanie Van Willigenburg, Christine Bessenrodt

Publication date: 14 March 2011

Published in: Advances in Mathematics (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1007.0994




Related Items

Skew key polynomials and a generalized Littlewood-Richardson ruleSchur functions in noncommuting variablesQuasisymmetric and noncommutative skew Pieri rulesMultiplicity free Schur, skew Schur, and quasisymmetric Schur functionsNoncommutative LR coefficients and crystal reflection operatorsModules of the 0-Hecke algebra and quasisymmetric Schur functionsSkew row-strict quasisymmetric Schur functionsLittlewood-Richardson rules for symmetric skew quasisymmetric Schur functionsQuasisymmetric Schur functionsOn antipodes of immaculate functionsRow-strict dual immaculate functionsExtended Schur functions and 0-Hecke modulesKohnert tableaux and a lifting of quasi-Schur functionsModules of the 0-Hecke algebra arising from standard permuted composition tableauxRigidity for the Hopf algebra of quasisymmetric functionsBackward jeu de taquin slides for composition tableaux and a noncommutative Pieri ruleOn \(q\)-symmetric functions and \(q\)-quasisymmetric functionsFrom symmetric fundamental expansions to Schur positivityA Murnaghan-Nakayama rule for noncommutative Schur functionsUnnamed ItemDual graphs from noncommutative and quasisymmetric Schur functionsA Schur-like basis of \(\mathsf{NSym}\) defined by a Pieri ruleLifting the dual immaculate functionsThe decomposition of 0-Hecke modules associated to quasisymmetric Schur functionsIndecomposable 0-Hecke modules for extended Schur functionsThe decomposition of 0-Hecke modules associated to quasisymmetric Schur functionsSkew key polynomials and the key posetDyck Algebras, Interval Temporal Logic, and Posets of Intervals



Cites Work