Detecting coalitions by optimally partitioning signed networks of political collaboration
From MaRDI portal
Publication:6319985
arXiv1906.01696MaRDI QIDQ6319985
Author name not available (Why is that?)
Publication date: 4 June 2019
Abstract: We propose new mathematical programming models for optimal partitioning of a signed graph into cohesive groups. To demonstrate the approach's utility, we apply it to identify coalitions in US Congress since 1979 and examine the impact of polarized coalitions on the effectiveness of passing bills. Our models produce a globally optimal solution to the NP-hard problem of minimizing the total number of intra-group negative and inter-group positive edges. We tackle the intensive computations of dense signed networks by providing upper and lower bounds, then solving an optimization model which closes the gap between the two bounds and returns the optimal partitioning of vertices. Our substantive findings suggest that the dominance of an ideologically homogeneous coalition (i.e. partisan polarization) can be a protective factor that enhances legislative effectiveness.
Has companion code repository: https://github.com/saref/frustration-index-UBQP
No records found.
This page was built for publication: Detecting coalitions by optimally partitioning signed networks of political collaboration
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6319985)