Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization
From MaRDI portal
Publication:6321826
arXiv1907.04371MaRDI QIDQ6321826
Author name not available (Why is that?)
Publication date: 9 July 2019
Abstract: We propose a new stochastic optimization framework for empirical risk minimization problems such as those that arise in machine learning. The traditional approaches, such as (mini-batch) stochastic gradient descent (SGD), utilize an unbiased gradient estimator of the empirical average loss. In contrast, we develop a computationally efficient method to construct a gradient estimator that is purposely biased toward those observations with higher current losses. On the theory side, we show that the proposed method minimizes a new ordered modification of the empirical average loss, and is guaranteed to converge at a sublinear rate to a global optimum for convex loss and to a critical point for weakly convex (non-convex) loss. Furthermore, we prove a new generalization bound for the proposed algorithm. On the empirical side, the numerical experiments show that our proposed method consistently improves the test errors compared with the standard mini-batch SGD in various models including SVM, logistic regression, and deep learning problems.
Has companion code repository: https://github.com/kenjikawaguchi/qSGD
This page was built for publication: Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6321826)