BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization

From MaRDI portal
Publication:6327190

arXiv1910.06403MaRDI QIDQ6327190

Author name not available (Why is that?)

Publication date: 14 October 2019

Abstract: Bayesian optimization provides sample-efficient global optimization for a broad range of applications, including automatic machine learning, engineering, physics, and experimental design. We introduce BoTorch, a modern programming framework for Bayesian optimization that combines Monte-Carlo (MC) acquisition functions, a novel sample average approximation optimization approach, auto-differentiation, and variance reduction techniques. BoTorch's modular design facilitates flexible specification and optimization of probabilistic models written in PyTorch, simplifying implementation of new acquisition functions. Our approach is backed by novel theoretical convergence results and made practical by a distinctive algorithmic foundation that leverages fast predictive distributions, hardware acceleration, and deterministic optimization. We also propose a novel "one-shot" formulation of the Knowledge Gradient, enabled by a combination of our theoretical and software contributions. In experiments, we demonstrate the improved sample efficiency of BoTorch relative to other popular libraries.




Has companion code repository: https://github.com/scorebo/scorebo








This page was built for publication: BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6327190)