Farthest-polygon Voronoi diagrams
From MaRDI portal
Publication:632728
DOI10.1016/j.comgeo.2010.11.004zbMath1210.65055OpenAlexW2124064239MaRDI QIDQ632728
Joachim Gudmundsson, Hyeon-Suk Na, Hazel Everett, Sylvain Lazard, Samuel Hornus, Marc Glisse, Otfried Schwarzkopf, Mi Ra Lee
Publication date: 25 March 2011
Published in: Computational Geometry (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.comgeo.2010.11.004
Numerical aspects of computer graphics, image analysis, and computational geometry (65D18) Complexity and performance of numerical algorithms (65Y20)
Related Items
An almost optimal algorithm for Voronoi diagrams of non-disjoint line segments ⋮ The L∞ Hausdorff Voronoi Diagram Revisited ⋮ On farthest Bregman Voronoi cells ⋮ ON THE FARTHEST LINE-SEGMENT VORONOI DIAGRAM ⋮ Improved separated red-blue center clustering ⋮ Farthest-point Voronoi diagrams in the presence of rectangular obstacles ⋮ Voronoi Diagram for Convex Polygonal Sites with Convex Polygon-Offset Distance Function ⋮ Minimizing the diameter of a spanning tree for imprecise points ⋮ Stabbing circles for sets of segments in the plane ⋮ A randomized incremental algorithm for the Hausdorff Voronoi diagram of non-crossing clusters ⋮ Convex-straight-skeleton Voronoi diagrams for segments and convex polygons ⋮ On farthest Voronoi cells ⋮ Abstract Voronoi Diagrams from Closed Bisecting Curves ⋮ Randomized incremental construction for the Hausdorff Voronoi diagram revisited and extended ⋮ The higher-order Voronoi diagram of line segments
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Farthest line segment Voronoi diagrams
- Voronoi diagram for services neighboring a highway
- A sweepline algorithm for Voronoi diagrams
- The upper envelope of Voronoi surfaces and its applications
- The Hausdorff Voronoi diagram of point clusters in the plane
- A fast planar partition algorithm. I
- Über Eine Verallgemeinerung Auf die Kugelfläche Eines Topologischen Satzes von Helly
- Optimal Point Location in a Monotone Subdivision
- Applying Parallel Computation Algorithms in the Design of Serial Algorithms
- FURTHEST SITE ABSTRACT VORONOI DIAGRAMS
- An Optimal Algorithm for the Intersection Radius of a Set of Convex Polygons
- The geodesic farthest-site Voronoi diagram in a polygonal domain with holes
This page was built for publication: Farthest-polygon Voronoi diagrams