Multiple outlier detection tests for parametric models
From MaRDI portal
Publication:6327741
arXiv1910.10426MaRDI QIDQ6327741
Author name not available (Why is that?)
Publication date: 23 October 2019
Abstract: We propose a simple multiple outlier identification method for parametric location-scale and shape-scale models when the number of possible outliers is not specified. The method is based on a result giving asymptotic properties of extreme z-scores. Robust estimators of model parameters are used defining z-scores. An extensive simulation study was done for comparing of the proposed method with existing methods. For the normal family, the method is compared with the well known Davies-Gather, Rosner's, Hawking's and Bolshev's multiple outlier identification methods. The choice of an upper limit for the number of possible outliers in case of Rosner's test application is discussed. For other families, the proposed method is compared with a method generalizing Gather-Davies method. In most situations, the new method has the highest outlier identification power in terms of masking and swamping values. We also created R package outliersTests for proposed test.
Has companion code repository: https://github.com/linas-p/outliersTests
No records found.
This page was built for publication: Multiple outlier detection tests for parametric models
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6327741)