Poincar\'e Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games
From MaRDI portal
Publication:6328059
arXiv1910.13010MaRDI QIDQ6328059
Author name not available (Why is that?)
Publication date: 28 October 2019
Abstract: We study a wide class of non-convex non-concave min-max games that generalizes over standard bilinear zero-sum games. In this class, players control the inputs of a smooth function whose output is being applied to a bilinear zero-sum game. This class of games is motivated by the indirect nature of the competition in Generative Adversarial Networks, where players control the parameters of a neural network while the actual competition happens between the distributions that the generator and discriminator capture. We establish theoretically, that depending on the specific instance of the problem gradient-descent-ascent dynamics can exhibit a variety of behaviors antithetical to convergence to the game theoretically meaningful min-max solution. Specifically, different forms of recurrent behavior (including periodicity and Poincar'e recurrence) are possible as well as convergence to spurious (non-min-max) equilibria for a positive measure of initial conditions. At the technical level, our analysis combines tools from optimization theory, game theory and dynamical systems.
Has companion code repository: https://github.com/lamflokas/cycles
This page was built for publication: Poincar\'e Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6328059)