Online Learning and Matching for Resource Allocation Problems

From MaRDI portal
Publication:6329360

arXiv1911.07409MaRDI QIDQ6329360

Author name not available (Why is that?)

Publication date: 17 November 2019

Abstract: In order for an e-commerce platform to maximize its revenue, it must recommend customers items they are most likely to purchase. However, the company often has business constraints on these items, such as the number of each item in stock. In this work, our goal is to recommend items to users as they arrive on a webpage sequentially, in an online manner, in order to maximize reward for a company, but also satisfy budget constraints. We first approach the simpler online problem in which the customers arrive as a stationary Poisson process, and present an integrated algorithm that performs online optimization and online learning together. We then make the model more complicated but more realistic, treating the arrival processes as non-stationary Poisson processes. To deal with heterogeneous customer arrivals, we propose a time segmentation algorithm that converts a non-stationary problem into a series of stationary problems. Experiments conducted on large-scale synthetic data demonstrate the effectiveness and efficiency of our proposed approaches on solving constrained resource allocation problems.




Has companion code repository: https://github.com/Dom98/Integrated_online_stationary_algorithm_implementation








This page was built for publication: Online Learning and Matching for Resource Allocation Problems

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6329360)