Efficient Calibration of Embedded MPC
From MaRDI portal
Publication:6330088
arXiv1911.13021MaRDI QIDQ6330088
Alberto Bemporad, Dario Piga, Marco Forgione
Publication date: 29 November 2019
Abstract: Model Predictive Control (MPC) is a powerful and flexible design tool of high-performance controllers for physical systems in the presence of input and output constraints. A challenge for the practitioner applying MPC is the need of tuning a large number of parameters such as prediction and control horizons, weight matrices of the MPC cost function, and observer gains, according to different trade-offs. The MPC design task is even more involved when the control law has to be deployed to an embedded hardware unit endowed with limited computational resources. In this case, real-time system requirements limit the complexity of the applicable MPC configuration, engendering additional design tradeoffs and requiring to tune further parameters, such as the sampling time and the tolerances used in the on-line numerical solver. To take into account closed-loop performance and real-time requirements, in this paper we tackle the embedded MPC design problem using a global, data-driven, optimization approach We showcase the potential of this approach by tuning an MPC controller on two hardware platforms characterized by largely different computational capabilities.
Has companion code repository: https://github.com/forgi86/efficient-calibration-embedded-MPC
This page was built for publication: Efficient Calibration of Embedded MPC
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6330088)