Duals invert
From MaRDI portal
Publication:633805
DOI10.1007/s10485-009-9210-7zbMath1259.18002OpenAlexW3189071403WikidataQ56687287 ScholiaQ56687287MaRDI QIDQ633805
Richard J. Wood, Ross H. Street, Ignacio L. López Franco
Publication date: 30 March 2011
Published in: Applied Categorical Structures (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10485-009-9210-7
Closed categories (closed monoidal and Cartesian closed categories, etc.) (18D15) Enriched categories (over closed or monoidal categories) (18D20) Actions of a monoidal category, tensorial strength (18D25)
Related Items
Maschke type theorems for Hopf monoids, Hopf comonads on naturally Frobenius map-monoidales, Oplax Hopf Algebras, Constructing colimits by gluing vector bundles, Unnamed Item, Torsors, herds and flocks, Hopf polyads, Hopf categories and Hopf group monoids viewed as Hopf monads, Formal Hopf algebra theory. I: Hopf modules for pseudomonoids
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Formal Hopf algebra theory. I: Hopf modules for pseudomonoids
- Note on Frobenius monoidal functors
- Formal Hopf algebra theory. II: Lax centres
- Braided tensor categories
- Monoidal bicategories and Hopf algebroids
- A coherent approach to pseudomonads
- Linearly distributive functors
- Categories tannakiennes
- The compact closed bicategory of left adjoints
- Quantum groups and representations of monoidal categories
- Cartesian Bicategories II
- Introduction to linear bicategories
- Introduction to bicategories
- Coherence for tricategories
- Frobenius Objects in Cartesian Bicategories
- The monoidal center construction and bimodules