Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence
From MaRDI portal
Publication:6342864
arXiv2006.07882MaRDI QIDQ6342864
Bastian Rieck, Christian Bock, Karsten Borgwardt, Guy Wolf, Nicholas Turk-Browne, Smita Krishnaswamy, Tristan Yates
Publication date: 14 June 2020
Abstract: Functional magnetic resonance imaging (fMRI) is a crucial technology for gaining insights into cognitive processes in humans. Data amassed from fMRI measurements result in volumetric data sets that vary over time. However, analysing such data presents a challenge due to the large degree of noise and person-to-person variation in how information is represented in the brain. To address this challenge, we present a novel topological approach that encodes each time point in an fMRI data set as a persistence diagram of topological features, i.e. high-dimensional voids present in the data. This representation naturally does not rely on voxel-by-voxel correspondence and is robust to noise. We show that these time-varying persistence diagrams can be clustered to find meaningful groupings between participants, and that they are also useful in studying within-subject brain state trajectories of subjects performing a particular task. Here, we apply both clustering and trajectory analysis techniques to a group of participants watching the movie 'Partly Cloudy'. We observe significant differences in both brain state trajectories and overall topological activity between adults and children watching the same movie.
Has companion code repository: https://github.com/BorgwardtLab/fMRI_Cubical_Persistence
This page was built for publication: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6342864)