Machine Learning and Algebraic Approaches towards Complete Matter Spectra in 4d F-theory
From MaRDI portal
Publication:6344137
arXiv2007.00009MaRDI QIDQ6344137
Author name not available (Why is that?)
Publication date: 30 June 2020
Abstract: Motivated by engineering vector-like (Higgs) pairs in the spectrum of 4d F-theory compactifications, we combine machine learning and algebraic geometry techniques to analyze line bundle cohomologies on families of holomorphic curves. To quantify jumps of these cohomologies, we first generate 1.8 million pairs of line bundles and curves embedded in , for which we compute the cohomologies. A white-box machine learning approach trained on this data provides intuition for jumps due to curve splittings, which we use to construct additional vector-like Higgs-pairs in an F-Theory toy model. We also find that, in order to explain quantitatively the full dataset, further tools from algebraic geometry, in particular Brill--Noether theory, are required. Using these ingredients, we introduce a diagrammatic way to express cohomology jumps across the parameter space of each family of matter curves, which reflects a stratification of the F-theory complex structure moduli space in terms of the vector-like spectrum. Furthermore, these insights provide an algorithmically efficient way to estimate the possible cohomology dimensions across the entire parameter space.
Has companion code repository: https://github.com/Learning-line-bundle-cohomology/Database
This page was built for publication: Machine Learning and Algebraic Approaches towards Complete Matter Spectra in 4d F-theory
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6344137)