Nonlinear Transform Coding

From MaRDI portal
Publication:6344527

arXiv2007.03034MaRDI QIDQ6344527

Eirikur Agustsson, Johannes Ballé, David Minnen, Nick Johnston, Saurabh Singh, Sung Jin Hwang, George Toderici, Philip A. Chou

Publication date: 6 July 2020

Abstract: We review a class of methods that can be collected under the name nonlinear transform coding (NTC), which over the past few years have become competitive with the best linear transform codecs for images, and have superseded them in terms of rate--distortion performance under established perceptual quality metrics such as MS-SSIM. We assess the empirical rate--distortion performance of NTC with the help of simple example sources, for which the optimal performance of a vector quantizer is easier to estimate than with natural data sources. To this end, we introduce a novel variant of entropy-constrained vector quantization. We provide an analysis of various forms of stochastic optimization techniques for NTC models; review architectures of transforms based on artificial neural networks, as well as learned entropy models; and provide a direct comparison of a number of methods to parameterize the rate--distortion trade-off of nonlinear transforms, introducing a simplified one.




Has companion code repository: https://github.com/google/codex








This page was built for publication: Nonlinear Transform Coding

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6344527)