MMSE-Optimal Sequential Processing for Cell-Free Massive MIMO With Radio Stripes

From MaRDI portal
Publication:6357010

arXiv2012.13928MaRDI QIDQ6357010

Author name not available (Why is that?)

Publication date: 27 December 2020

Abstract: Cell-free massive multiple-input-multiple-output (mMIMO) is an emerging technology for beyond 5G with its promising features such as higher spectral efficiency and superior spatial diversity as compared to conventional multiple-input-multiple-output (MIMO) technology. The main working principle of cell-free mMIMO is that many distributed access points (APs) cooperate simultaneously to serve all the users within the network without creating cell boundaries. This paper considers the uplink of a cell-free mMIMO system utilizing the radio stripe network architecture with a sequential fronthaul between the APs. A novel uplink sequential processing algorithm is developed which is proved to be optimal in both the maximum spectral efficiency (SE) and the minimum mean square error (MSE) sense. A detailed quantitative analysis of the fronthaul requirement or signaling of the proposed algorithm and its comparison with competing sub-optimal algorithms is provided. Key conclusions and implications are summarized in the form of corollaries. Based on the analytical and numerical simulation results, we conclude that the proposed scheme can greatly reduce the fronthaul signaling, without compromising the communication performance.




Has companion code repository: https://github.com/BJTU-MIMO/cell-free-survey








This page was built for publication: MMSE-Optimal Sequential Processing for Cell-Free Massive MIMO With Radio Stripes

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6357010)