An eigenvalue localization theorem for pentadiagonal symmetric Toeplitz matrices
DOI10.1016/j.laa.2011.05.025zbMath1230.15017OpenAlexW1977691736MaRDI QIDQ636263
Publication date: 26 August 2011
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.laa.2011.05.025
eigenvaluedeterminantNewton methodsChebyshev polynomialeigenvalue boundsbisectional methodspentadiagonal symmetric Toeplitz matrices
Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Eigenvalues, singular values, and eigenvectors (15A18) Toeplitz, Cauchy, and related matrices (15B05)
Related Items (14)
Cites Work
- Unnamed Item
- Unnamed Item
- Inside the eigenvalues of certain Hermitian Toeplitz band matrices
- Spectral and structural properties of some pentadiagonal symmetric matrices
- On the inverse problem of constructing symmetric pentadiagonal Toeplitz matrices from their three largest eigenvalues
- An Algorithm for the Inversion of Finite Toeplitz Matrices
- Spectral Properties of Banded Toeplitz Matrices
This page was built for publication: An eigenvalue localization theorem for pentadiagonal symmetric Toeplitz matrices