Real interpolation of generalized Besov-Hardy spaces and applications
DOI10.1007/s00041-010-9145-2zbMath1232.46029OpenAlexW2079501041MaRDI QIDQ636815
Alexandre Almeida, António M. Caetano
Publication date: 30 August 2011
Published in: The Journal of Fourier Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00041-010-9145-2
interpolationpseudodifferential operatorsmaximal functionswavelet decompositionsgeneralized Hardy spacesgeneralized Besov spaces
Nontrigonometric harmonic analysis involving wavelets and other special systems (42C40) Pseudodifferential operators as generalizations of partial differential operators (35S05) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) (H^p)-spaces (42B30) Abstract interpolation of topological vector spaces (46M35)
Related Items (6)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Weighted Besov and Triebel spaces: Interpolation by the real method
- Generalized Hardy spaces
- On Besov, Hardy and Triebel spaces for \(0<p\leq 1\)
- Pseudodifferential operators in Hardy-Triebel spaces
- Function spaces and wavelets on domains
- Pseudodifferential operators on local Hardy spaces
- Interpolation between \(L^\infty\) and \(H^1\), the real method
- A local version of real Hardy spaces
- Wavelet bases in generalized Besov spaces
- Locally solvable vector fields and Hardy spaces
- Characterisations of function spaces of generalised smoothness
- A generalization of Hardy spaces \(H^p\) by using atoms
- Pseudo-differential operators with nonregular symbols
- \(H^p\) spaces of several variables
- Recent developments in the theory of Lorentz spaces and weighted inequalities
- A note on continuity of pseudodifferential operators in Hardy spaces.
- A Generalization of the Calderón-Vaillancourt Theorem toLp andhp
- Anistropic H p , Real Interpolation, and Fractional Riesz Potentials
- Wavelet bases and entropy numbers in weighted function spaces
- Interpolation Between H p Spaces: The Real Method
- Entropy Numbers in Weighted Function Spaces and Eigenvalue Distributions of Some Degenerate Pseudodifferential Operators II
- The Hardy–Lorentz spaces Hp,q(Rn)
This page was built for publication: Real interpolation of generalized Besov-Hardy spaces and applications