Hyperparameter selection for Discrete Mumford-Shah
From MaRDI portal
Publication:6378782
arXiv2109.13651MaRDI QIDQ6378782
Author name not available (Why is that?)
Publication date: 28 September 2021
Abstract: This work focuses on a parameter-free joint piecewise smooth image denoising and contour detection. Formulated as the minimization of a discrete Mumford-Shah functional and estimated via a theoretically grounded alternating minimization scheme, the bottleneck of such a variational approach lies in the need to fine-tune their hyperparameters, while not having access to ground truth data. To that aim, a Stein-like strategy providing optimal hyperparameters is designed, based on the minimization of an unbiased estimate of the quadratic risk. Efficient and automated minimization of the estimate of the risk crucially relies on an unbiased estimate of the gradient of the risk with respect to hyperparameters. Its practical implementation is performed using a forward differentiation of the alternating scheme minimizing the Mumford-Shah functional, requiring exact differentiation of the proximity operators involved. Intensive numerical experiments are performed on synthetic images with different geometry and noise levels, assessing the accuracy and the robustness of the proposed procedure. The resulting parameter-free piecewise-smooth estimation and contour detection procedure, not requiring prior image processing expertise nor annotated data, can then be applied to real-world images.
Has companion code repository: https://github.com/charlesglucas/sugar_dms
This page was built for publication: Hyperparameter selection for Discrete Mumford-Shah
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6378782)