Mixture representations and Bayesian nonparametric inference for likelihood ratio ordered distributions

From MaRDI portal
Publication:6379891

arXiv2110.04852MaRDI QIDQ6379891

Author name not available (Why is that?)

Publication date: 10 October 2021

Abstract: In this article, we introduce mixture representations for likelihood ratio ordered distributions. Essentially, the ratio of two probability densities, or mass functions, is monotone if and only if one can be expressed as a mixture of one-sided truncations of the other. To illustrate the practical value of the mixture representations, we address the problem of density estimation for likelihood ratio ordered distributions. In particular, we propose a nonparametric Bayesian solution which takes advantage of the mixture representations. The prior distribution is constructed from Dirichlet process mixtures and has large support on the space of pairs of densities satisfying the monotone ratio constraint. With a simple modification to the prior distribution, we can test the equality of two distributions against the alternative of likelihood ratio ordering. We develop a Markov chain Monte Carlo algorithm for posterior inference and demonstrate the method in a biomedical application.




Has companion code repository: https://github.com/michaeljauch/lrmix








This page was built for publication: Mixture representations and Bayesian nonparametric inference for likelihood ratio ordered distributions

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6379891)