Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

From MaRDI portal
Publication:6380302

arXiv2110.07202MaRDI QIDQ6380302

Author name not available (Why is that?)

Publication date: 14 October 2021

Abstract: In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel. One of our main contributions is the integration of VBA within a neural network paradigm, following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and lead to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning.




Has companion code repository: https://github.com/yunshihuang/unfoldedvba








This page was built for publication: Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6380302)