Anharmonic oscillators in the complex plane, \(\mathcal{PT}\)-symmetry, and real eigenvalues
From MaRDI portal
Publication:638583
DOI10.1007/s11118-010-9208-7zbMath1263.34123arXiv1008.0905OpenAlexW1976825826MaRDI QIDQ638583
Publication date: 13 September 2011
Published in: Potential Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1008.0905
Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.) (34L40) Asymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions for ordinary differential operators (34L20) Inverse problems involving ordinary differential equations (34A55) Ordinary differential equations in the complex domain (34M99)
Related Items
Entire functions, PT-symmetry and Voros's quantization scheme ⋮ Root system of a perturbation of a selfadjoint operator with discrete spectrum
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Analytic continuation of eigenvalues of a quartic oscillator
- High energy eigenfunctions of one-dimensional Schrödinger operators with polynomial potentials
- \(PT\) symmetric Schrödinger operators: reality of the perturbed eigenvalues
- Anharmonic oscillators with infinitely many real eigenvalues and \(\mathcal{PT}\)-symmetry
- Asymptotics of eigenvalues of non-self-adjoint Schrödinger operators on a half-line
- Asymptotique des niveaux d'energie pour des Hamiltoniens à un degré de liberte
- Perturbation theory of odd anharmonic oscillators
- On the reality of the eigenvalues for a class of \(\mathcal{PT}\)-symmetric oscillators
- Convergence of an exact quantization scheme
- \(\mathcal P\mathcal T\)-symmetric harmonic oscillators
- \(PT\) Symmetry and necessary and sufficient conditions for the reality of energy eigenvalues
- Spectral analysis of the complex cubic oscillator
- Spectral equivalences, Bethe ansatz equations, and reality properties in 𝒫𝒯-symmetric quantum mechanics
- ON THE ASYMPTOTIC DISTRIBUTION OF EIGENVALUES
- The potential (iz)m generates real eigenvalues only, under symmetric rapid decay boundary conditions
- Complete set of inner products for a discrete PT-symmetric square-well Hamiltonian
- {\cal PT} symmetry breaking and exceptional points for a class of inhomogeneous complex potentials
- Extension of Stokes series for flow in a circular boundary
- Real Spectra in Non-Hermitian Hamiltonians Having<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="bold-script">P</mml:mi><mml:mi mathvariant="bold-script">T</mml:mi></mml:math>Symmetry
- Generating converging bounds to the (complex) discrete states of theP2+ iX3+ iαXHamiltonian
- Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian
- Pseudo-Hermiticity and generalized PT- and CPT-symmetries
- Eigenvalues of -symmetric oscillators with polynomial potentials