SnAKe: Bayesian Optimization with Pathwise Exploration
From MaRDI portal
Publication:6389763
arXiv2202.00060MaRDI QIDQ6389763
Author name not available (Why is that?)
Publication date: 31 January 2022
Abstract: Bayesian Optimization is a very effective tool for optimizing expensive black-box functions. Inspired by applications developing and characterizing reaction chemistry using droplet microfluidic reactors, we consider a novel setting where the expense of evaluating the function can increase significantly when making large input changes between iterations. We further assume we are working asynchronously, meaning we have to select new queries before evaluating previous experiments. This paper investigates the problem and introduces 'Sequential Bayesian Optimization via Adaptive Connecting Samples' (SnAKe), which provides a solution by considering large batches of queries and preemptively building optimization paths that minimize input costs. We investigate some convergence properties and empirically show that the algorithm is able to achieve regret similar to classical Bayesian Optimization algorithms in both synchronous and asynchronous settings, while reducing input costs significantly. We show the method is robust to the choice of its single hyper-parameter and provide a parameter-free alternative.
Has companion code repository: https://github.com/cog-imperial/snake
This page was built for publication: SnAKe: Bayesian Optimization with Pathwise Exploration
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6389763)