A Communication-Efficient Distributed Gradient Clipping Algorithm for Training Deep Neural Networks
From MaRDI portal
Publication:6398785
arXiv2205.05040MaRDI QIDQ6398785
Author name not available (Why is that?)
Publication date: 10 May 2022
Abstract: In distributed training of deep neural networks, people usually run Stochastic Gradient Descent (SGD) or its variants on each machine and communicate with other machines periodically. However, SGD might converge slowly in training some deep neural networks (e.g., RNN, LSTM) because of the exploding gradient issue. Gradient clipping is usually employed to address this issue in the single machine setting, but exploring this technique in the distributed setting is still in its infancy: it remains mysterious whether the gradient clipping scheme can take advantage of multiple machines to enjoy parallel speedup. The main technical difficulty lies in dealing with nonconvex loss function, non-Lipschitz continuous gradient, and skipping communication rounds simultaneously. In this paper, we explore a relaxed-smoothness assumption of the loss landscape which LSTM was shown to satisfy in previous works, and design a communication-efficient gradient clipping algorithm. This algorithm can be run on multiple machines, where each machine employs a gradient clipping scheme and communicate with other machines after multiple steps of gradient-based updates. Our algorithm is proved to have iteration complexity and communication complexity for finding an -stationary point in the homogeneous data setting, where is the number of machines. This indicates that our algorithm enjoys linear speedup and reduced communication rounds. Our proof relies on novel analysis techniques of estimating truncated random variables, which we believe are of independent interest. Our experiments on several benchmark datasets and various scenarios demonstrate that our algorithm indeed exhibits fast convergence speed in practice and thus validates our theory.
Has companion code repository: https://github.com/mingruiliu-ml-lab/communication-efficient-local-gradient-clipping
This page was built for publication: A Communication-Efficient Distributed Gradient Clipping Algorithm for Training Deep Neural Networks
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6398785)