Deep Generalized Schr\"odinger Bridge
From MaRDI portal
Publication:6411400
arXiv2209.09893MaRDI QIDQ6411400
Evangelos A. Theodorou, Tianrong Chen, Guan-Horng Liu, Oswin So
Publication date: 20 September 2022
Abstract: Mean-Field Game (MFG) serves as a crucial mathematical framework in modeling the collective behavior of individual agents interacting stochastically with a large population. In this work, we aim at solving a challenging class of MFGs in which the differentiability of these interacting preferences may not be available to the solver, and the population is urged to converge exactly to some desired distribution. These setups are, despite being well-motivated for practical purposes, complicated enough to paralyze most (deep) numerical solvers. Nevertheless, we show that Schr"odinger Bridge - as an entropy-regularized optimal transport model - can be generalized to accepting mean-field structures, hence solving these MFGs. This is achieved via the application of Forward-Backward Stochastic Differential Equations theory, which, intriguingly, leads to a computational framework with a similar structure to Temporal Difference learning. As such, it opens up novel algorithmic connections to Deep Reinforcement Learning that we leverage to facilitate practical training. We show that our proposed objective function provides necessary and sufficient conditions to the mean-field problem. Our method, named Deep Generalized Schr"odinger Bridge (DeepGSB), not only outperforms prior methods in solving classical population navigation MFGs, but is also capable of solving 1000-dimensional opinion depolarization, setting a new state-of-the-art numerical solver for high-dimensional MFGs. Our code will be made available at https://github.com/ghliu/DeepGSB.
Has companion code repository: https://github.com/ghliu/deepgsb
This page was built for publication: Deep Generalized Schr\"odinger Bridge