Bio-Heat Transfer and Monte Carlo Measurement of Near-Infrared Transcranial Stimulation of Human Brain
From MaRDI portal
Publication:6419912
arXiv2212.03946MaRDI QIDQ6419912
Author name not available (Why is that?)
Publication date: 7 December 2022
Abstract: Transcranial photobiomodulation is an optical method for non-invasive brain stimulation. The method projects red and near-infrared light through the scalp within 600-1100 nm and low energy within the 1-20 J/cm2 range. Recent studies have been optimistic about replacing this method with pharmacotherapy and invasive brain stimulation. However, concerns and ambiguities exist regarding the light penetration depth and possible thermal side effects. While the literature survey indicates that the skin temperature rises after experimental optical brain stimulation, inadequate evidence supports a safe increase in temperature or the amount of light penetration in the cortex. Therefore, we aimed to conduct a comprehensive study on the heat transfer of near-infrared stimulation for the human brain. Our research considers the transcranial photobiomodulation over the human brain model by projecting 810 nm light with 100 mW/cm2 power density to evaluate its thermal and optical effects using bioheat transfer and radiative transfer equation. Our results confirm that the near-infrared light spectrum has a small incremental impact on temperature and approximately penetrates 1 cm, reaching the cortex. A time-variant study of the heat transfer was also carried out to measure the temperature changes during optical stimulation.
Has companion code repository: https://github.com/faezeh96/Bio-Heat-Transfer-and-Monte-Carlo-Measurement-of-Near-Infrared-Transcranial-Stimulation_Geometry
This page was built for publication: Bio-Heat Transfer and Monte Carlo Measurement of Near-Infrared Transcranial Stimulation of Human Brain
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6419912)