Nystr\"om $M$-Hilbert-Schmidt Independence Criterion

From MaRDI portal
Publication:6427025

arXiv2302.09930MaRDI QIDQ6427025

Author name not available (Why is that?)

Publication date: 20 February 2023

Abstract: Kernel techniques are among the most popular and powerful approaches of data science. Among the key features that make kernels ubiquitous are (i) the number of domains they have been designed for, (ii) the Hilbert structure of the function class associated to kernels facilitating their statistical analysis, and (iii) their ability to represent probability distributions without loss of information. These properties give rise to the immense success of Hilbert-Schmidt independence criterion (HSIC) which is able to capture joint independence of random variables under mild conditions, and permits closed-form estimators with quadratic computational complexity (w.r.t. the sample size). In order to alleviate the quadratic computational bottleneck in large-scale applications, multiple HSIC approximations have been proposed, however these estimators are restricted to M=2 random variables, do not extend naturally to the Mge2 case, and lack theoretical guarantees. In this work, we propose an alternative Nystr"om-based HSIC estimator which handles the Mge2 case, prove its consistency, and demonstrate its applicability in multiple contexts, including synthetic examples, dependency testing of media annotations, and causal discovery.




Has companion code repository: https://github.com/flopska/nystroem-mhsic

No records found.








This page was built for publication: Nystr\"om $M$-Hilbert-Schmidt Independence Criterion

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6427025)