Inference on Optimal Dynamic Policies via Softmax Approximation
From MaRDI portal
Publication:6428798
arXiv2303.04416MaRDI QIDQ6428798
Author name not available (Why is that?)
Publication date: 8 March 2023
Abstract: Estimating optimal dynamic policies from offline data is a fundamental problem in dynamic decision making. In the context of causal inference, the problem is known as estimating the optimal dynamic treatment regime. Even though there exists a plethora of methods for estimation, constructing confidence intervals for the value of the optimal regime and structural parameters associated with it is inherently harder, as it involves non-linear and non-differentiable functionals of un-known quantities that need to be estimated. Prior work resorted to sub-sample approaches that can deteriorate the quality of the estimate. We show that a simple soft-max approximation to the optimal treatment regime, for an appropriately fast growing temperature parameter, can achieve valid inference on the truly optimal regime. We illustrate our result for a two-period optimal dynamic regime, though our approach should directly extend to the finite horizon case. Our work combines techniques from semi-parametric inference and -estimation, together with an appropriate triangular array central limit theorem, as well as a novel analysis of the asymptotic influence and asymptotic bias of softmax approximations.
Has companion code repository: https://github.com/syrgkanislab/optimal_dynamic_regime
This page was built for publication: Inference on Optimal Dynamic Policies via Softmax Approximation
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6428798)