Learning for Online Mixed-Integer Model Predictive Control with Parametric Optimality Certificates

From MaRDI portal
Publication:6430395

arXiv2303.12152MaRDI QIDQ6430395

Author name not available (Why is that?)

Publication date: 21 March 2023

Abstract: We propose a supervised learning framework for computing solutions of multi-parametric Mixed Integer Linear Programs (MILPs) that arise in Model Predictive Control. Our approach also quantifies sub-optimality for the computed solutions. Inspired by Branch-and-Bound techniques, the key idea is to train a Neural Network/Random Forest, which for a given parameter, predicts a strategy consisting of (1) a set of Linear Programs (LPs) such that their feasible sets form a partition of the feasible set of the MILP and (2) a candidate integer solution. For control computation and sub-optimality quantification, we solve a set of LPs online in parallel. We demonstrate our approach for a motion planning example and compare against various commercial and open-source mixed-integer programming solvers.




Has companion code repository: https://github.com/shn66/lampos








This page was built for publication: Learning for Online Mixed-Integer Model Predictive Control with Parametric Optimality Certificates

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6430395)