Revisiting DeepFool: generalization and improvement

From MaRDI portal
Publication:6430450

arXiv2303.12481MaRDI QIDQ6430450

Author name not available (Why is that?)

Publication date: 22 March 2023

Abstract: Deep neural networks have been known to be vulnerable to adversarial examples, which are inputs that are modified slightly to fool the network into making incorrect predictions. This has led to a significant amount of research on evaluating the robustness of these networks against such perturbations. One particularly important robustness metric is the robustness to minimal l2 adversarial perturbations. However, existing methods for evaluating this robustness metric are either computationally expensive or not very accurate. In this paper, we introduce a new family of adversarial attacks that strike a balance between effectiveness and computational efficiency. Our proposed attacks are generalizations of the well-known DeepFool (DF) attack, while they remain simple to understand and implement. We demonstrate that our attacks outperform existing methods in terms of both effectiveness and computational efficiency. Our proposed attacks are also suitable for evaluating the robustness of large models and can be used to perform adversarial training (AT) to achieve state-of-the-art robustness to minimal l2 adversarial perturbations.




Has companion code repository: https://github.com/alirezaabdollahpour/superdeepfool








This page was built for publication: Revisiting DeepFool: generalization and improvement

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6430450)