Fine topology and estimates for potentials and subharmonic functions
From MaRDI portal
Publication:643195
DOI10.1007/BF03321791zbMath1227.31007MaRDI QIDQ643195
Publication date: 28 October 2011
Published in: Computational Methods and Function Theory (Search for Journal in Brave)
Harmonic, subharmonic, superharmonic functions in higher dimensions (31B05) Fine potential theory; fine properties of sets and functions (31C40) Boundary behavior of harmonic functions in higher dimensions (31B25) Potentials and capacities, extremal length and related notions in higher dimensions (31B15)
Cites Work
- Complete sequences and approximations in normed linear spaces
- Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel
- On minimally thin and rarefied sets in \(R^ p\), p\(\geq 2\)
- Asymptotic growth of \(\delta\)-subharmonic functions of null order
- Slowly growing subharmonic function. II
- On the covering properties of certain exceptional sets in a half-space
- Slowly growing subharmonic functions. I
- Avalanches in networks of weakly coupled phase-shifting rotators
- Some results on thin sets in a half plane
- Uniqueness theorems for bounded holomorphic functions
- On topologies and boundaries in potential theory. Enlarged ed. of a course of lectures delivered in 1966
- Theory of capacities
- Causality and dispersion relations for fixed momentum transfer
- A Comparison Between thin Sets and Generalized Azarin Sets
- A Uniqueness Theorem for Bounded Analytic Functions
- Estimates for potentials and $ \delta$-subharmonic functions outside exceptional sets
- A Tribute to Matts Essén
- Identity Theorems for Functions of Bounded Characteristic
- A DECOMPOSITION OF A QUASI-OSCILLATOR
- The Maximum Modulus of Normal Meromorphic Functions and Applications to Value Distribution
- On meromorphic functions of order zero
- Étude au voisinage de la frontière des fonctions subharmoniques positives dans un demi-espace
- Questions of regularity connected with the Phragmen-Lindelöf principle
- Questions of regularity connected with the Phragmen-Lindelöf principle
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item