Nonparametric classification with missing data

From MaRDI portal
Publication:6437213

arXiv2305.11672MaRDI QIDQ6437213

Author name not available (Why is that?)

Publication date: 19 May 2023

Abstract: We introduce a new nonparametric framework for classification problems in the presence of missing data. The key aspect of our framework is that the regression function decomposes into an anova-type sum of orthogonal functions, of which some (or even many) may be zero. Working under a general missingness setting, which allows features to be missing not at random, our main goal is to derive the minimax rate for the excess risk in this problem. In addition to the decomposition property, the rate depends on parameters that control the tail behaviour of the marginal feature distributions, the smoothness of the regression function and a margin condition. The ambient data dimension does not appear in the minimax rate, which can therefore be faster than in the classical nonparametric setting. We further propose a new method, called the Hard-thresholding Anova Missing data (HAM) classifier, based on a careful combination of a k-nearest neighbour algorithm and a thresholding step. The HAM classifier attains the minimax rate up to polylogarithmic factors and numerical experiments further illustrate its utility.




Has companion code repository: https://github.com/torbensell/missing_data

No records found.








This page was built for publication: Nonparametric classification with missing data

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6437213)