Morse-Bott functions and the Lusternik-Schnirelmann category
DOI10.1007/S11784-010-0041-9zbMath1233.55004OpenAlexW2044801340MaRDI QIDQ644457
Hiroyuki Kadzisa, Mamoru Mimura
Publication date: 4 November 2011
Published in: Journal of Fixed Point Theory and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11784-010-0041-9
Lusternik-Schnirelmann categoryMorse-Bott functionsANR spacecone-decompositionhomogeneus spacesNDR pairsymmetric Riemannian spaces
Homogeneous spaces (22F30) Lyusternik-Shnirel'man category of a space, topological complexity à la Farber, topological robotics (topological aspects) (55M30) Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces (58E05) Differential geometry of symmetric spaces (53C35)
Related Items (8)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cone-decompositions of the special unitary groups
- Cone-decompositions of the unitary groups
- On the Lusternik-Schnirelmann category of Stiefel manifolds
- Stable splittings of Stiefel manifolds
- On the Lusternik-Schnirelmann category of Lie groups. II
- Cartan models and cellular decompositions of symmetric Riemannian spaces
- Secondary cohomology operations induced by the diagonal mapping
- Lusternik-Schnirelmann category and strong category
- Integrable Gradient Flows and Morse Theory
- On the Lusternik-Schnirelmann category of symmetric spaces of classical type
This page was built for publication: Morse-Bott functions and the Lusternik-Schnirelmann category