Some characterizations of function spaces connecting \(\mathcal L^{2,\alpha }\) spaces
From MaRDI portal
Publication:644546
DOI10.1007/s13163-010-0039-2zbMath1236.46028OpenAlexW2026042774MaRDI QIDQ644546
Publication date: 4 November 2011
Published in: Revista Matemática Complutense (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13163-010-0039-2
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A new class of function spaces connecting Triebel--Lizorkin spaces and \(Q\) spaces
- New Besov-type spaces and Triebel-Lizorkin-type spaces including \(Q\) spaces
- Littlewood-Paley characterization for Campanato spaces
- Some embeddings and equivalent norms of the \({\mathcal L}^{\lambda,s}_{p,q}\) spaces
- New applications of Besov-type and Triebel-Lizorkin-type spaces
- On pointwise multipliers for \(F_{p,q}^s (\mathbb{R}^n)\) in case \(\sigma_{p,q}< s< n/p\)
- Intrinsic characterizations of Besov spaces on Lipschitz domains
This page was built for publication: Some characterizations of function spaces connecting \(\mathcal L^{2,\alpha }\) spaces