Eigenvalue distributions of some non-isotropic degenerate elliptic operators
DOI10.1007/s13163-010-0042-7zbMath1238.47029OpenAlexW2034512803MaRDI QIDQ644548
Publication date: 4 November 2011
Published in: Revista Matemática Complutense (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13163-010-0042-7
eigenvalue distributionentropy numberssingular elliptic operatorsSobolev spaces with mixed integrability
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Estimates of eigenvalues in context of PDEs (35P15) Riesz operators; eigenvalue distributions; approximation numbers, (s)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators (47B06) General theory of partial differential operators (47F05) Second-order elliptic equations (35J15) Approximation by arbitrary nonlinear expressions; widths and entropy (41A46)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Wavelet frames, Sobolev embeddings and negative spectrum of Schrödinger operators on manifolds with bounded geometry
- Inequalities between eigenvalues, entropy numbers, and related quantities of compact operators in Banach spaces
- Entropy numbers, s-numbers, and eigenvalue problems
- Introduction to the theory of (non-symmetric) Dirichlet forms
- Eigenvalue distributions of some degenerate elliptic operators: An approach via entropy numbers
- Entropy numbers in function spaces with mixed integrability
- Distributions, Sobolev spaces, elliptic equations
- Weakly Differentiable Functions
- ENTROPY NUMBERS OF TRUDINGER–STRICHARTZ EMBEDDINGS OF RADIAL BESOV SPACES AND APPLICATIONS
- Entropy of Sobolev embeddings of radial functions and radial eigenvalues of Schrödinger operators on isotropic manifolds