Universal curvature identities
From MaRDI portal
Publication:645477
DOI10.1016/j.difgeo.2011.08.005zbMath1259.53013arXiv1104.1883OpenAlexW2066854779WikidataQ115356788 ScholiaQ115356788MaRDI QIDQ645477
Publication date: 15 November 2011
Published in: Differential Geometry and its Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1104.1883
Related Items
Universal curvature identities and Euler-Lagrange formulas for Kähler manifolds ⋮ Transplanting geometrical structures ⋮ Universal curvature identities. II. ⋮ Dimensional curvature identities in Fedosov geometry ⋮ On second-order, divergence-free tensors ⋮ Analytic continuation, the Chern-Gauss-Bonnet theorem, and the Euler-Lagrange equations in Lovelock theory for indefinite signature metrics ⋮ The local index density of the perturbed de Rham complex ⋮ UNIVERSAL CURVATURE IDENTITIES III
Cites Work
- Estimates of small Dirac eigenvalues on 3-dimensional Sasakian manifolds
- Weyl homogeneous manifolds modelled on compact Lie groups
- Critical metrics for quadratic functionals in the curvature on 4-dimensional manifolds
- Variational properties of the Gauss-Bonnet curvatures
- Manifolds of low cohomogeneity and positive Ricci curvature
- On a Hopf hypersurface of a complex space form
- Torsion of \(SU(2)\)-structures and Ricci curvature in dimension 5
- Nearly Kähler manifolds with vanishing Tricerri-Vanhecke Bochner curvature tensor
- General natural Einstein Kähler structures on tangent bundles
- Geometric realizations of curvature models by manifolds with constant scalar curvature
- The Einstein field equation in a multidimensional universe
- Curvature and the heat equation for the de Rham complex
- Errata to the paper: On the heat equation and the index theorem
- Some generalizations of the Riemann spaces of Einstein
- Curvature and the eigenvalues of the Dolbeault complex for Kaehler manifolds
- A curvature identity on a 4-dimensional Riemannian manifold
- On Gauss-Bonnet curvatures
- A Lefschetz fixed point formula for elliptic complexes. II: Applications
- Curvature and the eigenvalues of the Laplacian for elliptic complexes
- A generalization of a 4-dimensional Einstein manifold
- Double forms, curvature structures and the $(p,q)$-curvatures
- Quelques formules de variation pour une structure riemannienne
This page was built for publication: Universal curvature identities