An adaptive homotopy approach for non-selfadjoint eigenvalue problems
From MaRDI portal
Publication:647364
DOI10.1007/s00211-011-0388-xzbMath1263.65106OpenAlexW2019833777MaRDI QIDQ647364
Joscha Gedicke, Carsten Carstensen, Volker Mehrmann, Agnieszka Miedlar
Publication date: 23 November 2011
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00211-011-0388-x
eigenvalue problemsadaptive algorithmsadaptive homotopy methoditerative matrix eigenvalue solversnon-selfadjoint partial differential operators
Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Estimates of eigenvalues in context of PDEs (35P15) Numerical methods for eigenvalue problems for boundary value problems involving PDEs (65N25)
Related Items
Fast solvers for partial differential equations. Abstracts from the workshop held May 22--28, 2011. ⋮ Nonlinear eigenvalue and frequency response problems in industrial practice ⋮ An adaptive finite element method for the transmission eigenvalue problem ⋮ A multilevel correction method for convection-diffusion eigenvalue problems ⋮ The a posteriori error estimates and an adaptive algorithm of the FEM for transmission eigenvalues for anisotropic media ⋮ VEM discretization allowing small edges for the reaction–convection–diffusion equation: source and spectral problems ⋮ A note on the residual type a posteriori error estimates for finite element eigenpairs of nonsymmetric elliptic eigenvalue problems ⋮ A TFC-based homotopy continuation algorithm with application to dynamics and control problems ⋮ Multilevel finite element discretizations based on local defect correction for nonsymmetric eigenvalue problems ⋮ A class of spectral element methods and its a priori/a posteriori error estimates for 2nd-order elliptic eigenvalue problems ⋮ Benchmark Computation of Eigenvalues with Large Defect for Non-Self-adjoint Elliptic Differential Operators ⋮ A posteriori error estimators for convection-diffusion eigenvalue problems ⋮ Smoothed-adaptive perturbed inverse iteration for elliptic eigenvalue problems ⋮ Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic PDE problems
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A posteriori error estimators for convection-diffusion eigenvalue problems
- Homotopy method for the numerical solution of the eigenvalue problem of self-adjoint partial differential operators
- Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates
- Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations
- A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems
- On estimators for eigenvalue/eigenvector approximations
- $hp$-Finite Elements for Elliptic Eigenvalue Problems: Error Estimates Which Are Explicit with Respect to $\lambda$, h, and p
- Solving Ordinary Differential Equations I
- A Convergent Adaptive Method for Elliptic Eigenvalue Problems
- Rayleigh–Ritz Majorization Error Bounds with Applications to FEM
- Bounds on Changes in Ritz Values for a Perturbed Invariant Subspace of a Hermitian Matrix
- CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS FOR EIGENVALUE PROBLEMS
- Finite Element-Galerkin Approximation of the Eigenvalues and Eigenvectors of Selfadjoint Problems
- Solving Eigenvalue Problems of Real Nonsymmetric Matrices with Real Homotopies
- Homotopy-Determinant Algorithm for Solving Nonsymmetric Eigenvalue Problems
- The Homotopy Continuation Algorithm for the Real Nonsymmetric Eigenproblem: Further Development and Implementation
- Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation
- Homotopy Method for the Large, Sparse, Real Nonsymmetric Eigenvalue Problem
- New estimates for Ritz vectors
- ARPACK Users' Guide
- A Posteriori Control of Modeling Errors and Discretization Errors
- A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems
- A two-grid discretization scheme for eigenvalue problems
- Templates for the Solution of Algebraic Eigenvalue Problems
- A Convergent Adaptive Algorithm for Poisson’s Equation
- Uniform accuracy of eigenpairs from a shift‐invert Lanczos method
- New A Priori FEM Error Estimates for Eigenvalues
- A posteriori error estimates and a local refinement strategy for a finite element method to solve structural-acoustic vibration problems
- A posteriori error control for finite element approximations of elliptic eigenvalue problems