A finiteness result for groups which quasi-act on hyperbolic spaces.
DOI10.1007/s10711-010-9492-9zbMath1262.20048OpenAlexW1997872286MaRDI QIDQ649017
Publication date: 30 November 2011
Published in: Geometriae Dedicata (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10711-010-9492-9
entropytorsion-free groupsquasi-isometriesfiniteness conditionsGromov-hyperbolic spacesword-hyperbolic groupsquasi-actions
Generators, relations, and presentations of groups (20F05) Geometric group theory (20F65) Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces (53C23) Hyperbolic groups and nonpositively curved groups (20F67) Group actions on manifolds and cell complexes in low dimensions (57M60)
Cites Work
- Representations of polygons of finite groups.
- Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov. (Geometry and group theory. The hyperbolic groups of Gromov)
- Sur les groupes hyperboliques d'après Mikhael Gromov. (On the hyperbolic groups à la M. Gromov)
- Counting hyperbolic manifolds
- Homotopy type and volume of locally symmetric manifolds
- Counting hyperbolic manifolds with bounded diameter
- Some finiteness results for groups with bounded algebraic entropy.
- Groups quasi-isometric to symmetric spaces.
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A finiteness result for groups which quasi-act on hyperbolic spaces.